Quasi-contractions restricted with linear bounded mappings in cone metric spaces
نویسندگان
چکیده
*Correspondence: [email protected] 1School of Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China 2Research Center of Applied Statistics, Jiangxi University of Finance and Economics, Nanchang, 330013, China Full list of author information is available at the end of the article Abstract In this paper, we introduce the notion of a quasi-contraction restricted with a linear bounded mapping in cone metric spaces, and prove a unique fixed point theorem for this quasi-contraction without the normality of the cone. It is worth mentioning that the main result in this paper could not be derived from Ćirić’s result by the scalarization method, and hence indeed improves many recent results in cone metric spaces. MSC: 06A07; 47H10
منابع مشابه
Fixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملQuasi-contractive Mappings in Fuzzy Metric Spaces
We consider the concept of fuzzy quasi-contractions initiated by '{C}iri'{c} in the setting of fuzzy metric spaces and establish fixed point theorems for quasi-contractive mappings and for fuzzy $mathcal{H}$-contractive mappings on M-complete fuzzy metric spaces in the sense of George and Veeramani.The results are illustrated by a representative example.
متن کاملCone normed spaces
In this paper, we introduce the cone normed spaces and cone bounded linear mappings. Among other things, we prove the Baire category theorem and the Banach--Steinhaus theorem in cone normed spaces.
متن کاملFixed Point Theorems for semi $lambda$-subadmissible Contractions in b-Metric spaces
Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.
متن کاملCommon fixed points of f-weak contractions in cone metric spaces
Recently, Choudhury and Metiya [Fixed points of weak contractions in cone metric spaces, Nonlinear Analysis 72 (2010) 1589-1593] proved some fixed point theorems for weak contractions in cone metric spaces. Weak contractions are generalizations of the Banach's contraction mapping, which have been studied by several authors. In this paper, we introduce the notion of $f$-weak contractions and als...
متن کامل